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Majority rule dynamics in finite dimensions
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We investigate the long-time behavior of a majority rule opinion dynamics model in finite spatial dimen-
sions. Each site of the system is endowed with a two-state spin variable that evolves by majority rule. In a
single update event, a group of spins with a fixedd size is specified and all members of the group adopt the
local majority state. Repeated application of this update step leads to a coarsening mosaic of spin domains and
ultimate consensus in a finite system. The approach to consensus is governed by two disparate time scales, with
the longer time scale arising from realizations in which spins organize into coherent single-opinion bands. The
consequences of this geometrical organization on the long-time kinetics are explored.
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I. INTRODUCTION Mean-field behavior was not reproduced even in four dimen-

. . . - sions, indicating a still larger value for the upper critical
The majority rule mode{(MR) is a simple description for imension of the MR model.

consensus formation in an interacting population. The model" |, ihis article, we focus on the MR model in finite spatial
consists ofN spins(opinions that are fixed on lattice sites, gimensions. The questions that we will investigate are: What
and each spin can assume the states +1 or -1, correspondigghe geometry of single-opinion domains? How long does it
to two opposite opinions. Spins evolve by the following take to reach consensus? How do basic system parameters
affect the consensus time? We find that the probability dis-
tribution for the consensus time involves two very different

L time scales when the spatial dimension is greater than one.
A . The longer time scale arises from configurations in which
i 7 — - opposite-opinion domains  organize into  coherent
N geometries—stripes in two dimensions, slabs in three dimen-
sion, etc. While the probability for the system to reach such

a coherent state decreases as the spatial dimension is
FIG. 1. llustration of a single majority rule update step for the increased—approximately 33% in two dimensions and 8% in
five-site von Neumann neighborhood on the square lattice. three dimensions—we believe that this probability remains
nonzero in all finite spatial dimension. More importantly, the
time needed to reach final consensus from these coherent

two steps: first, pick a group of spins of fixed odd si2e tates is extremely long. These configurations therefore give

second, all the spins in this group adopt the state of the loc dominant tribution to th i
group majority(Fig. 1). These two steps are repeated until a eT ominant con 1' ution fo the mean consensus time.
final consensus is necessarily reached. Our goal is to under- 1O Put our results in context, it is instructive to compare

stand basic properties of this approach to consensus in finit@® MR model with two fundamental kinetic spin models,
spatial dimensions. namely, the voter modelVM) [4], and the kinetic Ising

A general form of this majority rule dynamics was intro- model with zero-temperature Glauber kineti¢§) [5]. The
duced by Galanil] in which a variable number of groups of VM describes consensus formation in a population of indi-
arbitrary size are formed simultaneously and then majorityviduals with zero self confidence. In an update step of the
rule is simultaneously applied to each group. Our implemenVM, a spin is selected at random and it blindly adopts the
tation of majority rule, in which only a single small group is state of a randomly-selected neighbor. This step is repeated
updated at each time step, allows for considerable analyticaintil consensus is necessarily reached. Because of the under-
progress in the mean-field limi2,3] and also makes it con- lying linearity of the VM spin-flip rate on the number of
venient to simulate the model, especially in high dimensionsanti-aligned nearest neighbors, the VM is exactly soluble in

In a previous study of the MR modg2], it was shown all spatial dimension$4,6,7]. In particular, for anN-spin
that the average time until consensus is reached is propogystem ind dimensions with zero initial magnetization, the
tional to the logarithm of the number of spihkin the sys-  consensus time scales Nsfor d>2, asNIn N in d=2 (the
tem in the mean-field limit. On the other hand, for finite critical dimension of the VN| and asN? in d=1. Because
dimensions, numerical simulations suggested that the moge average magnetization is conserved, the probability that
probable consensus time grows as a power lai,ivith an  the system eventually ends with all spins equals the initial
exponent that decreases as the spatial dimension increasggnsity of + spins in all spatial dimensions.

In contrast, the zero-temperature kinetics of the IG model
obeys a form of majority rule. In the update step, a flippable

*Electronic address: patrick@bu.edu spin (those with zero or positive energig picked at random
"Electronic address: redner@bu.edu and it adopts the state of the majority in its interaction neigh-
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borhood. In the case of a tie in the neighborhood distech 1072
can happen on bipartite lattigeshe selected spin flips with

probability 1/2. This elemental update step is repeated until

no flippable spins are left. At early times, coarsening do- -
mains form whose typical length scale grows%&due to an 10
underlying diffusive dynamic§8].

The primary operational difference between the 1G and
MR models is that in the lattezll the spins within the neigh- 107°
borhood flip, a feature that also occurs in Galam’s m¢dlgl
and also in the Sznajd moddl] of social influence, where a
small group that is in consensus can influence other spins at 8
the periphery of the group. This distinction in the update rule 10
has fundamental consequences. In the IG model, infinitely
long-lived metastable states can occur that consist of per- A
fectly flat interfaces ind=2, or states where all interfaces 10
have zero net curvature for=3[10]. In contrast, consensus
is the only possible final state in the MR model. Neverthe-

Pa(t)

10000 15000 20000
t

less, both the zero-temperature IG model and the MR model 107
have anomalous kinetics because of the existence of very
long-lived transient states. =

In Sec. Il, we present simulation results for the anomalous o
behavior of the consensus time distribution and the two basic 107

controlling time scales. Then in Sec. Ill, we discuss the role
of the long-lived coherent states that dominate the

»

asymptotic tail of the consensus time distribution. A qualita- 107 ‘ ,
tive argument for the lifetime of these states is given in Sec. 0 750 1500 2250 3000
IV. We conclude in Sec. V. t

107

II. CONSENSUS TIME DISTRIBUTION

We first simulate the distribution of times until consensus 107
is reached on finite-dimensional hypercubic lattices with pe-
riodic boundary conditions. Typically, we initialize each re-
alization of the system to contain equal numbers-cdind — "
spins. We choose the group size to®e3 and construct the 10
group by selecting a spin at random and then randomly pick-
ing two out of its 21 nearest neighbors. This definition for a

Py(t)

group has the advantages of computational simplicity and a 1077 - - -
dimension-independent group size. Other definitions for a 0 400 800 1200 1600
group, such as the von Neumann neighborhood of Fig. 1 1

(the initial site plus its @ nearest neighbors; group size
G=2d+1), lead to qualitatively similar results.

We then evolve each realization according to MR kinetics® R
until consensus is reached. The quantities that we focus ofg"de™ cz?ero-magnetl_zatloE state. Sho@wn are resultgprto bot-
are(i) the distribution of consensus timé%(t), in anN-spin tom) a 5 square 'a.tt'CE{N'ZSOO’ a 1 .CUb'_C lattice(N=2744),

. S o M . and a 7 four-dimensional hypercubic latti¢gd=2401). Data are all
system with zero initial magnetization, afid) the probabil- based on 10realizations.
ity for a realization to reach a stripe or a slab st&gm) (to
be defined beloyy as a function ofN and the initial magne-
tization m. From these data, we find that the most probable consensus

The consensus time distributiof(t) for spatial dimen-  time, t,,,, scales wittN ast,,,~N*, with a~1.24, 0.72, and
sions 2, 3, and 4 are shown in Fig. 2. It is evident that in two0.56 for spatial dimensions 2, 3, and 4, respectively. These
and three dimension$\(t) is characterized by two time values are identical to those obtained previously in R&f.
scales—the most probable consensus time, corresponding tioese were based on smaller-scale simulations in which real-
the peak of the distribution, and a much longer time scal@zations where the consensus time exceedédrge preset
associated with the asymptotic exponential decay. In foulimit were terminated.
dimensions, there is a change in the slope of the asymptotic On the other hand, the asymptotic decay R(t) is
tail of Py(t) for t=400, suggesting the possibility that the clearly governed by a much longer characteristic time and
asymptotic kinetics involves yet a third time scale. we now apply two methods to estimate this longer time

FIG. 2. Distribution of consensus time3,(t), versust (in units
f Monte Carlo steps per spifor an N-spin system starting from a
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FIG. 3. Double logarithmic plot oM,(N), the kth reduced mo-
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1.18 fork=1 (O), 1.64 fork=2 (), 1.77 fork=4 (A), and
1.78 fork=8 (+). However, there is a perceptible downward
curvature in the dependence M, on N for largek, so that
linear fits are inadequate to determine Mhelependence of
accurately.

Our second analysis method is simply to measure the
slope of the exponential tail dPy(t) directly for different
values ofN and thereby determingN). To do this, we first
make a first estimate for by finding the slope in the region
that is visually most linear. Then we refine this estimate by
computing the slopes in the systematic rang&3 through
27, 712 through 3, 7/2 through 4, etc., and using the range
where a linear fit has the highest correlation coefficient. In
the resulting data forr versusN, there is now small and
systematic downward curvatur@ig. 4). By dropping the
first four data points one-by-one and then performing linear
fits to the remaining data, the local slope decreases from
1.746 to 1.719 in two dimensions. In three dimensions, there
is a larger decrease in the local slope from 1.832 to 1.709 as
the first six points are deleted. Extrapolating this local slope
to N—oo, we obtain the estimates=1.7+0.04 ind=2 and
v=1.5£0.1 ind=3 in the relationr~N". The error bars are
a subjective guess of the uncertainty in the extrapolation.

IIl. ANOMALOUS COARSENING AND LONG-LIVED
COHERENT STATES

The main result of the above analysis is that the average
consensus time is much larger than the dependendé6f
that would arise if domain coarsening were entirely governed
by diffusive dynamics. By observing the evolution of many

ments of the consensus time distribution, versus the total number gkalizations of the system, it is clear that the asymptotic tail

spinsN for k=1 (O), k=2 (), k=4 (A), k=8 (+), in d=2 (top)
andd=3 (bottom. Data are based on 3@ealizations ind=2 and

4 X 10° realizations ind=3. The lines are least-squares linear fits to
the largeN data.

scale. First, we consider the reduced moments of the conse
sus time distribution
fo

As suggested by the data in Fig. 2, if the long-time tail of

1/k
MAMEQKMWW=[ ﬁmmm}. (1)

consensus time distribution has a simple exponential decay

of the forme™¥™ at long times, then all the reduced mo-
ments would asymptotically scale a&3\), with subdominant
corrections that become smallerlagicreases. This trend is
illustrated in Fig. 3 wherd, is plotted as a function dfl for
various values ok. In d=2, eachM, grows as a power law
in N for largek, but with a slightly different apparent expo-

nent. Least-squares fits to the data give the following expo-

nents ind=2: 1.64 fork=1 (O), 1.73 fork=2 (1), 1.75 for
k=4 (A), and 1.75 fork=8 (4). From this limiting largek
value of this exponent we can then infer tNedependence
of 7.

For d=3, the behavior is qualitatively similar, except that
there is a large disparity in the exponents Koy for k=1 and

of the consensus time distribution arises from situations
where thet+ and— spins organize into spatially coherent and
long-lived states that consist of relatively flat stripes in two
dimensions(Fig. 5), slabs in three dimensiori§ig. 6), and
analogously(we believe in higher dimensions. The exis-
tence of these states is one of the most surprising feature of
the MR model. In spite of the isotropy of the MR interaction,
the long-lived transient states arise and spontaneously break

T
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FIG. 4. Double logarithmic plot of(N) (in units of Monte Carlo
steps per spinversusN for d=2 (O) andd=3 (A). The lines are

for k> 1. Linear fits to the data now give the exponent valueghe best fits to the last few data points.
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FIG. 7. Consensus time distribution for a?S@juare lattice for a
two-stripe(dashegland random initial conditiosolid). All data are
based on 19realizations. Time is in units of Monte Carlo steps per
spin.

realization shown, a clearly resolved stripe emerges by 100
time steps, while ultimate consensus is achieved when 1850
time steps have elapsed; notice that a time of 1850 steps is
relatively early in the asymptotic tail d®y(t) in Fig. 2.

In spite of the anomalous long-time kinetics of the MR
model, the early-time coarsening is diffusive in nature. To
determine the growth of the typical domain length scale at
early times, we studied the time evolution of the two-spin

FIG. 5. Snapshots of a 5Gystem att=0, 1, 5, 20, 80, and correlation function. We took this correlation function at dif-
200. ferent times and found the length rescaling that gave the best

data collapse. We thus found that the appropriate rescaling
this symmetry. Once the system reaches such a state, furthidae correlation function is by a length scale that is propor-
evolution proceeds extremely slowly, as we shall discuss betional tot*/2. We therefore conclude that the early-time coars-
low. ening in the MR model is characterized by a length scale that

To develop intuition for these coherent states, we show igrows ast’2.

Fig. 5 a set of snapshots of a 8®0 system that happensto A phenomenon analogous to stripe formation occurs in
evolve to a stripe. After a few time steps, the lattice-scalghree dimensions, where long-lived states arise that consist of
granularity of the random initial state has disappeared due ttwo relatively flat slabs of oppositely oriented spiisg. 6).

the effective surface tension in the majority rule dynamicsFor the example shown from a 2Rittice, a slab state forms
After this early-time transient, the subsequent evolutionaround 150 time steps, while final consensus does not occur
qualitatively resembles the coarsening of a spin system withintil 3800 time steps have elapsed.

nonconserved order-parameter kinetics. However, domains To verify that stripe states actually govern the asymptotic
tend to develop a stringy morphology, a feature that prodtail of Py(t) two dimensions, we also study the evolution of
motes the formation of stripes that span the system. For the synthetic system with an ordered initial state that consists
of two straight stripes, with half the spins and half the
spins—. The long-time tail of the consensus time distribution
for this special initial condition follows a single exponen-
tially decaying function, as shown in Fig. 7. Also shown in

s this figure is the corresponding distribution for a system of
x 3?:\‘?,7 “ I the_z same size_ W_ith a random zero—mfignetization initial con-
TR : e WA dition. The coincidence of the slopes in the tails of these two

"Y‘g-‘ ROl distributions shows that stripe states control the long-time
evolution of random zero-magnetization initial condition
systems.

Because of the crucial role that spatially coherent states
play in the MR model, we also study the probabiliy(m)

FIG. 6. One of the two interfaces of the slab state on a cubidhat a randomly preparedl-spin system ind dimensions
lattice of linear dimension 20. Coordinates are in units of latticewith initial magnetizationrm evolves to such a state. We use
spacing. two independent methods to meas8gem). One is based on
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. . . FIG. 9. Probability to reach a stripe state versus initial magne-
FIG. 8. Probability to reach a stripe state versus number of spin§,ation m for a 5 system. Data are based or¥®alizations.
N for d=2 (O) and d=3 (OJ) using the threshold value 0.&ee

text). Data are based on 1@ealizations. . . . o
of linear dimensiorL and cut it into four equal subsquares of

linear sizeL./2. The final state in each of these subsquares is
‘ 4 I . _ NSUpeached more quickly than that of the entire system. We now
time I|e§ within the asymptotic tail of the consensus UiMenake the plausible assumption, based on observations of
distribution. For example, for the data from the>580 sys- many realizations of the system, that each subsquare inde-

:em thlgt.hz, tfé%(t)allr;eglofn c?r:_respo?ds tq a Cﬂrsenﬁust,t'mgendently reaches consensus. Then out of thedsible
greater than - Ihus for this system size all realization onfigurations of these subsquares, only the following ar-
with t>600 are counted as reaching a coherent state. rangements;

Alternatively, we investigate correlation functions that are
engineered to detect stripe states. Ber2, we consider the ++ —-= +- -+
following correlation functions for two spins that are located
a distance./2 apart:

Cu(t) = 5(s(x,y,))s(x £ L/2,y,1)),

simply counting the fraction of realizations whose consensu

-— +4+ +- —+

where the+ and — symbols refer to the final state of each
subsquare, correspond to a stripe state oflikel system.
1 This argument then suggests ti&t{m=0)=4/2*=1/4.
Cy(H) = 2(s(xy,s(xy £ L/2,1)). This coarse-graining argument straightforwardly general-
For both a random state and for consensus, these correlatiéfS t©© higher spatial dimensions. On the cubic lattice, we
functions equal zero. Conversely, for an ordered two-stripdlivide anL X L XL cube into eight subcubes of linear dimen-
state with stripes of widti_/2 parallel to thex axis, Cx  Sion L/2. If these subcubes each independently reach con-
=+1 andC,=-1, and vice versa for stripes parallel to he ~SENsus, then a slab state on the original cldoasisting of
axis. We therefore posit that a stripe state arises if the corrdWO Slabs of oppositely oriented spins, each of dizel.
lation function in the directiofs) parallel to the stripe is < L/2) can be achieved in six possible ways. The probability
greater than a threshold value, while the correlation functiorPf reaching a slab state is therefore +2.047. Ind dimen-
perpendicular to the stripe is less than the negative osions, this same line of reasoning givegm=0)=2d/2%".
this threshold value. We arbitrarily choose the threshold td/Nhile our argument is crude, the resulting numerical values
equal 0.5, but our results for largé¢ depend only weakly for Sy qualitatively mirror the corresponding estimates from
[Sy(m=0) varies by<10%)] on the threshold value when it simulations.
is in the range 0.3-0.7. The results given below are based Our approach also helps explain why stripe states quickly
on the threshold set to 0.5. disappear when the initial magnetization is nonzero. As an
We find that the stripe/slab probabilitg,(m=0) grows example, for initial magnetization 0.08, we find by numerical
quickly for smallN and then saturates to a nonzero value thasimulations that the probability that a 225 system even-
is close to 0.33 il=2 and 0.08 fod=3 (Fig. 8). The stripe  tually ends with all spinst+ is 0.88. Now employing the
probability in two dimensions is very close to that found above coarse-graining argument for a>560 system, the
previously in the zero-temperature evolution of the Isingfour 25X 25 subsquares will each reaeh consensus with
model with Glauber kinetickL0]. Note also that as the initial probability 0.88 and— consensus with probability 0.12.
magnetizatiorm is moved away zerdSy(m) quickly decays Then the probability for the 5850 system to reach a
to zero(Fig. 9). This simply reflects the fact that if one phase Stripe state isSy~4(0.88%(0.12?~0.0446. This is very
is initially below the percolation threshold, there is a very close (probably fortuitously with our numerical result of
small possibility for minority phase droplets to merge andSy(m=0.08 ~0.0498.
form a stripe that spans the system. Another important aspect of the evolution to the final state
We can qualitatively understand the dimension depenis the dependence of the final magnetization on the initial
dence of the probability to reach a stripe state by the follow-nagnetization. Since the system always reaches consensus,
ing rough argumengsee also Ref{10]). For simplicity, we  the final magnetizatiomn; is simply the difference in the
first discuss the case of two dimensions with the randonprobabilities that the systems ends with all sptasand all
zero-magnetization initial condition. Consider a large systenspins—. On the square lattice, we find that the curve of the
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~~~~~~ separated by a distance of ordewhen they are first formed,
the lifetimeT of the stripe state should therefore given by

L2
i T~%,

. whereD(L) is the diffusion coefficient of a single interface
with transverse dimensiol.

We may obtain a simple albeit rough estimate for this
diffusion coefficient by treating each site on the interface as
an independent random walk0,12. For ad-dimensional

FIG. 10. Final magnetizatiom; as a function of initial magne- system, a smooth interface contains of the orddr# sites.
tizationm, on the square lattice for linear di_mensibn 10 (dotted |4 g single time step, each interface site will randomly move
curve, 20 (dashed| 30 (dot-dash, and S0(solid). by +1 perpendicular to the interface. Hence if each site is

independent, the center of mass of the interface will move by
final magnetization versus the initial magnetization ap-a distance/L9"1/L%1~L=@D2jn one time step. As a result,
proaches a step function &s— (Fig. 10. Thus any initial  the diffusion coefficient of the interfac®(L) scales as
bias predetermines the final state of the system in the thef--(d-1),
modynamic limit. This step-function behavior is in contrast e tested this prediction by simulation by following the
to the behavior in one dimension, where the final magnetizaeyolution of a single interface in a long stiipr slab geom-
tion curve remains nonsingular &—c [2]. Finally, it is  etry with transverse dimensidnin which all the spins on the
worth noting thatm; equals the initial magnetizatiom for  right half are set to +1 and all the spins on the left half are set
the voter model in all spatial dimensiond]; there is no  to —1. We then let the spins evolve by majority rule dynam-
tyranny of the majority in the voter model. ics. After a short transient that lasts of the order of one time
step, we observe that the interface moves diffusively, with a
diffusion coefficient that scales approximatelylas in two
IV. LIFETIME OF STRIPE STATES dimensions and as™? in three dimensions. Given the crude-
ghess of the above random walk argument, it is surprising that

Once a stripe state is formed, the evolution to ultimat ) : . . .
consensus is controlled by the time required for the two in_the simulation results agree quite well with the prediction

- - e (L)~ LD,
terfaces that define the stripe to meet and annihilate. In onk , , o .
dimension, it is easy to see that each isolated interface be- From this scaling of the diffusion coefficient on the trans-
tween + and — spins moves by free diffusion. When two Ve'se linear dmensugﬂ, Eq.(?) then gives a consensus time
interfaces approach to nearest-neighbor separation they neb-that scales ag~L § Equivalently, in term(ig}‘dthe total
essarily annihilate(Note that in the kinetic Ising model, two NUmPer of spind=L% the dependence B~ N"""". How-
nearest-neighbor interfaces can annihilate, with probabilitfVer: this prediction is only qualitatively consistent with the
1/2, or recede by one lattice spacing, also with probabilitye*Ponent values of 1.7 fat=2 and 1.5 ford=3 that were
1/2, in a single update stepTherefore the time for the last qbtalned from direct numerical simulations of thg consensus
two domain walls to annihilate is proportional 8, whereL time distribution. We do not have an explanation for this
is the linear dimension of the system. Further, because thdiScrepancy.
system is controlled by the meeting of two random walks on
a finite ring, the consensus time distribution has an exponen-
tial decay of the formeUN? [7].

In two and three dimensions, the interfaces between e studied the time evolution of the majority ruleIR)
stripes are quite smootlrigs. 5 and and the scaling of the model for finite-dimensional systems. One of our main re-
interface width on the transverse dimension of the systerults is that the approach to consensus in an initially unbi-
appears to be in the Edwards-Wilkinson universality classised system is surprisingly complex. Before ultimate consen-
[11]. We verified the smoothness of the interface by preparsus is reached, a nontrivial fraction of all realizations falls
ing a system of linear siz€ X L% in d dimensions, with  into coherent metastable states that consist of stripes in two
L>L, in which all spins in the regiof0,£/2] are initially ~ dimensions and slabs in three dimensions. We anticipate that
in the — state, and all spins in the regi¢/2,£] are ini-  analogous coherent states arise in higher spatial dimensions.
tially in the + state. In two dimensions, the width of the  The interfaces between domains in these coherent states are
interface initially grows slowly in time and eventually satu- quite smooth and reflect the strong surface tension in the
rates to a value that approximately scalesvasL?. Inthree  majority rule dynamics.
dimensions, the growth of the width is even slower and the Due to these coherent states, the time to reach consensus
saturation value of the width is consistent with a logarithmicis anomalously long and is controlled by a diffusion process
dependence oh. that brings two interfaces close enough that they can annihi-

Thus it is the diffusion of the interface as a whole ratherlate. The characteristic time scale for this annihilation is
than fluctuations in the interface shape that determines theuch longer than the most probable time to reach consensus.
lifetime of the stripe state. Since the interfaces are typicallyThe fraction of realizations that reach these long-lived states

(2)

03

V. SUMMARY AND DISCUSSION
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30

We also believe it will be fruitful to study simple exten-
o sions of the MR model with more stringent conditions for
Br °% 1 achieving consensus. One example is to have a higher
0° threshold than simple majority before the opinion of a group
0° ] is swayed. While a higher threshold will obviously slow the
o dynamics, it should be interesting to investigate whether this
] modification leads to different scaling properties for the
° mean consensus time and the distribution of consensus times.
| A more intriguing generalization arises when each spin
has more than two opinions, where we anticipate new types
10° 10 10* of dynamical behavior. With more than two states, the pos-
N sibility of a dynamically stable steady state that consists of
coalescing and coexisting multiple opinion groups was dis-
cussed in the framework of the “stochastic seceder” model
[13]. In the context of our majority rule model, there obvi-
: . . ously will be slower dynamics because it may be possible to
decreases ad increases, but their role appears to be dom"have a group with no local majority, but only a local plural-

nant in the asymptotic kinetics. When_ the initial ma_gnetlza-ity. Such a group would not evolve according to the majority
tion is nonzero, however, these long-lived states quickly dis-

appear. As a result, the consensus time distribution has _ru[e d_ynamics. Thus configurations in which t_here 's no ma-
single beak and the’re is no long-time tail. Furthermore, th %rlty in each group reprgsen't a'nother' absorbing state for the
time until consensus grows only Iogarithrﬁically in the éys- ynamics. In the_mean-fleld limit, we find that such a system
tem size(Fig. 1. Thus an initial bias in the density of spins never reaches this frustra_ted state, as th(_a co_rrespondmg fixed
is a decisivé infl.uence in the long-time behavior of the sys—pomt of equal concentrgtlons of all species 'S _unsteﬁlb@.
tem. Instead, for a system with more than two opinion states, the

. . time to reach ultimate consensus is merely increased by a
We gave a crude coarse-graining argument to estimate th

probability to reach a coherent state as a function of th ne1ult|pllcat|ve factor compared to the two-opinion MR

spatial dimension. This approach qualitatively explained thS‘nodel. However, for finite spatial dimensions, the existence

. " ._of more than two opinions appears to have a more significant

behavior Of. the_probqblllty to reach .5.UCh astate as a funcm@l‘fect on the long-time behavior that depends fundamentally

of the spatial dimensiod and the .'”'“"’?' magnetization. on the interplay between the group size and the number of
Finally, we suggest several directions for further study.

First, it would be worthwhile to determine the value of the states. When there are many distinct local majorities in the

" ; : - initial state the group dynamics has a primarily diffusive
upper critical dimension of the MR model. An exact anaIySIScharacter. However, when there is of the order of one local

of this model on the complete graph, where all spins are__. . o : .
nearest neighbors of each other, showed that the mean coﬁr]-gjzggéme opinion of this group quickly overtakes the en-
sensus time grows as h[2]. On the other hand, the simu- '
lations presented here and [i] suggested that the mean

consensus time grows as a power lavhifior spatial dimen-

sions 1, 2, 3, and 4. These two facts suggest that the upper We thank Pablo Hurtado, Paul Krapivsky, Mauro Mobilia,
critical dimension of the MR model is greater than 4. It and Federico Vazquez for helpful discussions and advice. We
would be worthwhile to have a theoretical understanding foralso thank the NSF for financial support of this research
the apparently large value of the upper critical dimension. through Grant No. DMR0227670.

FIG. 11. Consensus tim@& units of Monte Carlo steps per spin
versusN in d=2 for initial magnetizatiorm=0.2.
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